

VillageWaters

Pilot construction in Poland

Authors: Andrzej Eymontt, Andrzej Jucherski, Magdalena Gugała, Michał Kuźniar Institute of Technology and Life Sciences

VillageWaters final seminar Tallinn, Estonia 24th of January 2019

Building pilots in Poland, Activity 3.2

 In Poland, we have built two wastewater treatment plants:

 First one in Tylicz in Karpaty Mountains near Krynica City

 Second one in Sokoły Municipality, for an elementary school in Bruszewo village

Polish pilot locations

Tylicz

ŚCIEŻKA EDUKACYJNO-PREZENTACYJNA OBIEKTÓW TECHNOLOGICZNYCH DO OCZYSZCZANIA ŚCIEKÓW Z WYKORZYSTANIEM PROCESÓW FILTRACJI W QUASI TECHNICZNYCH INSTALACJACH GRUNTOWO-ROŚLINNYCH

WIELOKOMOROWY OSADNIK PRZEPŁYWOWY

WSTĘPNE OCZYSZCZANIE ŚCIEKÓW W WARUNKACH ANOKSYCZNYCH I BEZTLENOWYCH.

PODSTAWOWE PROCESY OCZYSZCZANIA:

- OWE PROCESY OCZYSZCZANIA: sedymentacją zawiesin o skuteczności do 70 % flotacja (tworzenie kożucha) fermentacja gnicle amonifikacja Norg. z mineralizacją BZT, i ChZT w zakresie 25-50 % i biogenów N i P w przedziale 10-15 %

Średnie steżenie podstawowych składników zanieczyszczeń na wypływie z osadnika : 80 mg/l (lato/zima)
 105 mg/l
 300 mg/l

interreg

- ChZT P-PO 12.5 mg

VillageWaters

www.villagewaters.eu

ZRASZANE ZŁOŻE KERAMZYTOWE O PIONOWYM PRZEPŁYWIE ŚCIEKÓW

Przeznaczenie: OCZYSZCZANIE BIOLOGICZNE ŚCIEKÓW W WARUNKACH TLENOWYCH

- ociekowe z wypełnieniem keramzytowym
- 2.0 m3/d - 3,8 m²
- grubość warstwy filtracyjnej - 1,1 m - 250 W (230V)

PODSTAWOWE PROCESY OCZYSZCZANIA:

- a. mineralizacja substancji organicznych BZT, i ChZT w zakresie 69+84 % i 74+78 % w okresie całorocznym
- nitryfikacja jonów amonowych do azotanów 63+77 % w okresie
- dnie stężenie podstawowych składników zanieczyszczeń na odpływie ze złoża:
 - 49÷94 mg/l - 73+93 mg/l
 - 18÷30 mg/l N-NH, (azot amonowy)

W skład błony biologicznej wchodzą przede wszystkim tlenowe bakterie heterotroficzne (cudzożywne). Bakterie śluzowate, nitkowate, na bazie których namnażają się pierwotniaki osiadłe, a następnie obserwuje się występowanie wrotków, ameb i nicieni.

VillageWaters www.villagewaters.eu

STOKOWE ZŁOŻE GRUNTOWO-TRAWIASTE

mozga trzcinowata

Przeznaczenie: DOCZYSZCZANIE ŚCIEKÓW Z PODWYŻSZONYM USUWANIEM BIOGENÓW wariant priorytetowy

 typ - gruntowo-roślinne
 ilość ścieków (jedno złoże) - do 0,5 m³/d (ok. 2,0m³ kilka złóż równoległych) szerokość złoża -20 m grubość warstwy filtracyjnej - 0,25+0,5 m. - wypełnienie - mieszanka ziemi rodzimej z piaskiem gruboziarnistym

PODSTAWOWE PROCESY OCZYSZCZANIA z:

- POUSTAWOWE PROCESY OCZYSZCZANIA:
 awiesia poprzez filtracje, w zakresie */ 12*28 % w okresie całorocznym
 substancji organicznych (BZT., ChZT) poprzez mikrobiologiczny rozkład tlenowy i beztienowy w lącznym zakresie:
 azotu całkowitego poprzez : synutalnaczną nitryfikacje, denitryfikacje,
 pobleranie przez cestliny w lącznym zakresie: 50+59 %
 fosforu przez: sorpcje w materiale złoża, nicych soli,
 pobleranie przez cestliny w lącznym zakresie: 74+81 %
 7 przyrost skuteczności oczyszczania na złożu stokowym
- Średnie stężenie podstawowych składników zanieczyszczeń na odpływie ze złoża: N-NH, (azot amonowy) 0,5+2,5 mg/l w okresie calorocznym N-NO, 9,0+20,0 mg/l
 - N, (azot całkowity) BZT, - 14,0+26,0 mg/l - 3,0 mg/l
 - ChZT P-PO - 27,0+31,0 mg/l - 1,3÷1,8 mg/l Zawiesina - 18,0 mg/l

Zabiegi

VillageWaters www.villagewaters.eu

KASKADOWO LABIRYNTOWY UKŁAD ZŁÓŻ Z POD I POWIERZCHNIOWYM PRZEPŁYWEM ŚCIEKÓW

STAW (OCZKO WODNE) JAKO ODBIORNIK OCZYSZCZONYCH ŚCIEKÓW

Przeznaczenie:

Odbiór i zagospodarowanie oczyszczonych ścieków w postaci zbiornika retencyjnego wody do celów gospodarczych oraz estetyzacji gospodarstwa.

Grzybienie, Lilie wodne

Krwawnica pospolita (Lythrum salicaria) w głębi Pałka szerokolistna (Typha latifolia)

Ryby karpiowate Karaś ozdobny (Carassius auratus)

Interreg

VillageWaters www.villagewaters.eu

MŁAKA GÓRSKA UŻYTEK EKOLOGICZNY Z TYPOWĄ FLORĄ I FAUNĄ

FAUNA

Kosacce (Iris pseudacorus)

Turzyca bagienna (Carex limosa)

FLORA

Wierzba wiciowa (Salix Viminalis)

Sitowie leśne (Scirpus sylvaticus)

Pałka wodna (Typha)

Trzcina pospolita

(Phragmites australis)

Kumak górski (Bombina variegata)

Kaczka krzyżówka (Anas platyrhyncho)

Żmija zygzakowata (Vipera berus)

VillageWaters www.villagewaters.eu

RÓW FILTRACYJNY Z IZOLOWANYM ZŁOŻEM GLEBOWYM

Powierzchnia stawu: do 30 m²

www.villagewaters.eu

Przeznaczenie Obiekt do prezentacji efektów oczyszczania ścieków w glebie

RÓW WODNY Z ROŚLINNOŚCIA

PRZEZNACZENIE: dodatkowe oczyszczanie ścieków

Budowa rowu

Podstawowe procesy oczyszczania:

- pobieranie przez rośliny składników biogennych

VillageWaters www.villagewaters.eu

VillageWaters

EUROPEAN REGIONAL DEVELOPMENT FUND

EUROPEAN REGIONAL DEVELOPMENT FUND

VillageWaters

EUROPEAN REGIONAL DEVELOPMENT FUND

VillageWaters

Building the technological systems in the pilots - Bruszewo

The school in the village of Bruszewo in Sokoły commune

Prof. Andrzej Eymontt
Institute of Technology and Life Science
a.eymontt@itp.edu.pl
48 22 243 55 57

VillageWaters