

VillageWaters

VillageWaters introduction

Kati Räsänen Natural Resources Institute Finland, Luke

VillageWaters mid-term seminar, period 4 Warsow 4th of October 2017

VillageWaters Shortly

- <u>VillageWaters</u> = Water emissions and their reduction in village communities –
 villages in Baltic Sea Region as pilots-VillageWaters
- <u>Aim</u>: is to find out the most sustainable technological wastewater treatment solutions to decrease wastewater emissions of sparsely populated areas of the Baltic Sea
- Schedule: 1.3.2016-28.2.2019 (6 periods)
- Budget: 3 007 536,20 e
- <u>Funding body</u>: <u>Interreg Baltic Sea Reagion</u> (BSR)
- Partners

https://villagewaters.eu/

o 13 partners from 5 different countries of Baltic Sea:

Finland (FI), Estonia (ES), Latvia (LA), Lithuania (LT), Poland (PO)

о в Lead partner: Luke (FI)

Partners: now we have 13 partners from 5 countries

Estonia

Finland

Latvia

Lithuania

Poland

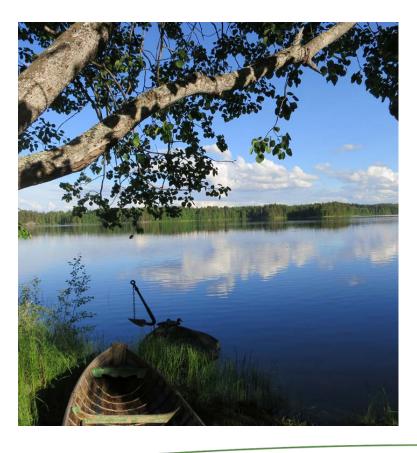
Work packages and activities

Collection and evaluation of the existing information

Pilots:
Building up
the
practical
systems

Sharing information inside and outside the project

		WP/A
	1	Project management and administration
	2	Evaluation of baseline and after technological changes in the pilot villages
	2.1.	A survey for compiling a comprehensive technology
	2.2.	Social aspects in the usage of the technological system
	2.3.	Functionality based on economy of the technological solutions by Cost-Benefit analysis
	2.4.	Functionality of the technological solutions by water and soil analyses
	2.5.	Effectiveness of the technological solutions by Life Cycle Assessment as an approach
	2.6.	Identification of the potentially well fitting system solutions by applied Cost-Benefit analysis
	3	Piloting the technological systems in the pilot villages
	3.1.	Assessing the best-fitting wastewater treatment systems for the pilots
	3.2.	Building the technological system in the pilots
	4	Capacity building
	4.1.	Building the information tool
	4.2.	Establishment of activity platform and collaboration
	4.3.	Pilot communication – internal (between pilots) and external (communication outside
		from the pilots)
	4.4.	Technological solutions – mapping, benchmarking and choosing
	4.5.	Dissemination of best practices in target group trainings


VillageWaters Scientific methods and data sources

- Methods to assess environmental impacts
 - LCA=Life Cycle Assessment (climate change impact and eutrophication of the Baltic Sea)
 - Water, sludge and soil analyses (nutrient and microbial analyses)
- Method to assess economical impacts
 - Cost-benefit-analysis
- Method to study social impacts
 - SIA=social impact assessment
- Method to assess overall fitness
 - Multi-criteria assessment on technological, economic an environmental impacts

- Data is collected from
 - All WWT-technologies available on the markets
 - o Pilots
 - Single family houses

Data is collected e.g. from the Pilots

- The pilots are village-size wastewater treatment systems that are renovated in the project:
 - 2 in Estonia
 - o 2 Finland
 - o 2 Latvia
 - o 1 Lithuania
 - o 2 Poland
- More information on:

https://villagewaters.eu/Pilot Villages in t he Project 769

VillageWaters Target groups

- Homeowners in sparsely populated areas of Baltic Sea
- Municipal authorities
- SME entrepreneurs in wastewater treatment
- Researchers in environmental science
- Policymakers who work in environmental fields
- VillageWaters information will be published in English and partly also in Finnish, Estonian, Lithuanian, Latvian, Polish and Swedish.

Aim in VillageWaters is to produce the VillageWaters-application

- VIllageWaters-application is a practical e-service system
 - which helps to find the most <u>effective</u>, <u>practical</u>, <u>costeffective</u> and <u>environmentally</u> friendly wastewater treatment solutions for the scattered dwelling households, villages and public bodies
 - ➤ The aim is to decrease the wastewater emissions locally but also into the Baltic Sea to the level set by the forthcoming EU water legislation.

Aim in VillageWaters

- In addition to the application, project results are disseminated to the target groups by
 - Project reports
 - 'Connect and share'-platform
 - Workshops and trainings etc.
- More information:

https://villagewaters.eu/About VillageWaters 500

Thank you!

Kati Räsänen
Natural Resources Institute
Finland (Luke)
Survontie 9A
40500 Jyväskylä, FINLAND
Phone. +358 29 532 6779
kati.rasanen@luke.fi
www.luke.fi

https://villagewaters.eu/

EUROPEAN REGIONAL DEVELOPMENT

VillageWaters